On the Relation of Probability, Fuzziness, Rough and Evidence Theory
نویسندگان
چکیده
Since the appearance of the first paper on fuzzy sets proposed by Zadeh in 1965, the relationship between probability and fuzziness in the representation of uncertainty has been discussed among many people. The question is whether probability theory itself is sufficient to deal with uncertainty. In this paper the relationship between probability and fuzziness is analyzed by the process of perception to simply understand the relationship between them. It is clear that probability and fuzziness work in different areas of uncertainty. Here, fuzzy event in the presence of probability theory provides probability of fuzzy event in which fuzzy event could be regarded as a generalization of crisp event. Moreover, in rough set theory, a rough event is proposed representing two approximate events, namely lower approximate event and upper approximate event. Similarly, in the presence of probability theory, rough event can be extended to be probability of rough event. Finally, the paper shows and discusses relation among lower-upper approximate probability (probability of rough events), belief-plausibility measures (evidence theory), classical probability measures, probability of generalized fuzzy-rough events and probability of fuzzy events.
منابع مشابه
Hybrid Probabilistic Models of Fuzzy and Rough Events
This paper discusses the relationship between probability and fuzziness based on the process of perception. As a generalization of crisp set, fuzzy set is used to model fuzzy event as proposed by Zadeh. Similarly, we may consider rough set to represent rough event in terms of probability measure. Special attention will be given to conditional probability of fuzzy event as well as conditional pr...
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملFUZZY INFORMATION AND STOCHASTICS
In applications there occur different forms of uncertainty. The twomost important types are randomness (stochastic variability) and imprecision(fuzziness). In modelling, the dominating concept to describe uncertainty isusing stochastic models which are based on probability. However, fuzzinessis not stochastic in nature and therefore it is not considered in probabilisticmodels.Since many years t...
متن کاملGranular Computing
It is well accepted that in many real life situations information is not certain and precise but rather uncertain or imprecise. To describe uncertainty probability theory emerged in the 17th and 18th century. Bernoulli, Laplace and Pascal are considered to be the fathers of probability theory. Today probability can still be considered as the prevalent theory to describe uncertainty. However, in...
متن کاملEntropies Of Fuzzy Indiscernibility Relation And Its Operations
Yager’s entropy was proposed to compute the information of fuzzy indiscernibility relation. In this paper we present a novel interpretation of Yager’s entropy in discernibility power of a relation point of view. Then some basic definitions in Shannon’s information theory are generalized based on Yager’s entropy. We introduce joint entropy, conditional entropy, mutual information and relative en...
متن کامل